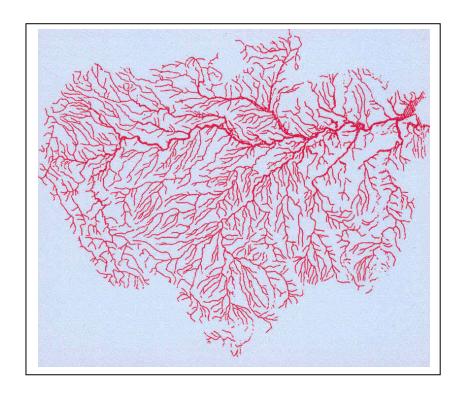
Persistence and Competition: A Review involving Non-spatial and Spatial Modeling Environments

By

Jon Bell

UMBC



(Amazon River Basin, by Hideki Takayusu)

Talk Outline

The Beginnings: Single Population, Single Compartment

Mobility: Diffusion-Proliferation Modeling and "Patch" size

Populations in Advection-driven Environments: flow rate vs. reproduction rate

Persistence in River Networks

Competition between Two Species: Single Compartment and Competitive Exclusion

Two Species Competition in an Advection-driven Environment

Beginning Demographics

Thomas Robert Malthus: An Essay on the Principle of Population as it Affects the future Improvement of Society (1798-anonymously; 1803-signed) population increases in geometric ratio, food only in arithmetic ratio.

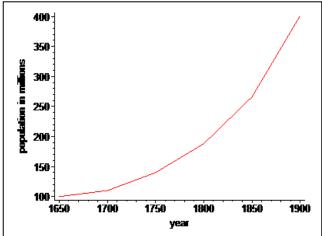
Necessary for population to be limited by 'checks' of vice and misery....created

controversy.

$$\frac{dN}{dt} = rN = (b - d)N$$

$$N(t) = population density$$

Observations Concerning the Increase of Mankind (1751, Circulated 1755)



Unrestrained population growth could double itself every 25 years or so

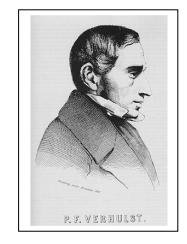
P.F. Verhulst, Mem. Acad. Roy. Bruxelles (1844)

Rate of population growth is proportional to product of existing population and the difference between the total available resources

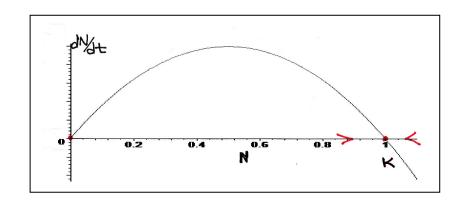
and resources used by the present population

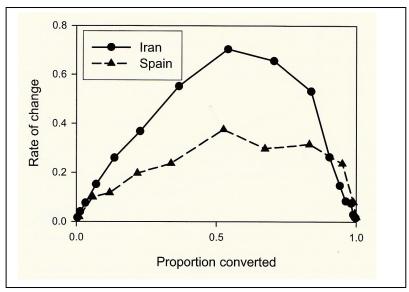
$$\frac{dN}{dt} = rN(K - N)$$

K = Carrying Capacity



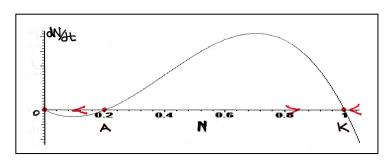
Verhulst (logistic):

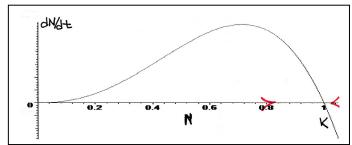




(from Turchin, Historical Dynamics)

Allee effect: maximum intrinsic growth at an intermediate density. Associated with overall individual fitness.





Strong Allee effect: bistable case

Weak Allee effect

$$\frac{dN}{dt} = rN(1 - N/K)(N/A - 1)$$

John Graunt: Natural and Political Observations Made Upon the Bills of Mortality (1662)

"...that London...is perhaps to a

Head too big for the Body and possably to strong; that this head grows
three times as fast as the Body to
which it belongs..."

The number of burials in London generally exceeded the number of baptisms throughout the 18th Cen-

The Diseases, and Cas			11
Affrighted	1 Jaundies	• • • • • • • • • • • • • • • • • • • •	43
Aged (- Danialos		8
Ague	3 Impostume		74
Apoplex, and Meagrom	Kil'd by sev	eral accidents	46
Bit with a mad dog	King's Evil	······································	38
Bleeding	Lethargie		2
Bloody flux, scowring, and	Livergrown		87
flux	Lunatique		5
Brused, Issues, sores, and		themselves	15
ulcers,			80
Burnt, and Scalded	Murthered .		7
Burst, and Rupture		nd starved at	•
Cancer, and Wolf	nurse		7
Canker	Palsie		25
Childbed 1	Piles		1
Chrisomes, and Infants 22	Plague		8
Cold, and Cough			13
Colick, Stone, and Strangury	Pleurisie, an	d Spleen	36
Consumption 17	Purples, and	spotted Feaver	38
Convulsion 2			7
Cut of the Stone	Rising of th	e Lights	98
Dead in the street, and	Sciatica		1
starved	Scurvey, and	Itch	9
Dropsie, and Swelling 20	Suddenly		62
Orowned	Surfet		86
Executed, and prest to death	Swine Pox.		6
Falling Sickness	Teeth		470
Fever 110	Thrush, and	Sore mouth	40
Fistula	Tympany		13
Flocks, and small Pox 53	Tissick		34
French Pox	Vomiting		1
Sangrene	Worms		27
fout			
(Males 4994)	(35.3		
Christened Females4590	Males.	4932 Where	eof,
In all9584	uried Temale	s4603 > of the	
		9535 Plagu	e.8
Increased in the Burials in th	122 Parishes, a	nd at the Pest-	
house this year			993
Decreased of the Plague in the	122 Parishes, at	nd at the Pest-	
house this year		266	3

tury. For each thousand burials there was the following number of baptismal in successive twenty-year periods: 1680-1700, **681**; 1700-1720, **721**; 1720-1740, **649**; 1740-1760, **638**; 1761-1765 (4 years) **644**.

(Source: Montroll and Badger, Intro to Quantitative Aspects of Social Phenomena)

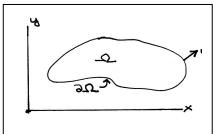
So we need to next consider population mobility...

Mobility through Diffusion

Case 1: Malthusian (linear): $N_t = D\Delta N + rN$ in $\Omega \subset \Re^2$

$$a_1 N + a_2 v \cdot \nabla N = 0 \quad on \quad \partial \Omega$$

For operator $-\Delta$, spectrum is discrete, nondecreasing Sequence of eigenvalues $\{\lambda_n\}$,



 $N(x,t) = \sum a_n e^{(r-\lambda_n D)t} \varphi_n(x)$ so population goes extinct (or grows unboundedly) if $r - \lambda_1 D < 0$ (resp. $r - \lambda_1 D > 0$).

For fixed r, D, a monotonicity theorem ($\tilde{\Omega} \subset \Omega \Rightarrow \lambda_1(\tilde{\Omega}) > \lambda_1(\Omega)$) implies there is a **critical size of patch** such that $\lambda_1(\Omega_{cr}) = r/D$. For $\Omega \supset \Omega_{cr}$, $\lambda_1(\Omega) < r/D$.

Case 2: Verhulst (logistic): $N_t = D\Delta N + \rho N(1 - N/K)$ in Ω

Consider 1D case, nondimensionalize:

u = N/K, $\tilde{x} = x/L$, $\tilde{t} = tD/L^2$, $r = L^2 \rho/D$; drop tilde notation

Fisher's Equation:

(Fisher, 1937; KPP, 1937)

$$u_t = u_{xx} + ru(1 - u)$$

For spread of a favorable gene in a 1D habitat

Diversion:

Diffusion: Traveling wave (front) solutions

Case 2 continued (Logistic): $u_t = u_{xx} + ru(1-u)$

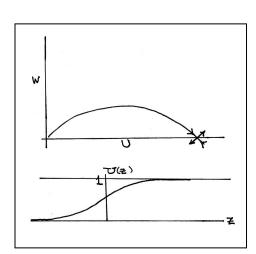
$$u(x,t) = U(z), \quad z = x + \theta \cdot t$$

$$\theta U' = U'' + rU(1 - U)$$
 or
$$\begin{cases} U' = w \\ w' = \theta w - rU(1 - U) \end{cases}$$

$$\theta > 2\sqrt{r} \leftrightarrow r < \theta^2/4$$

node-saddle heteroclinic orbit (TWS)

 $0 < \theta < 2\sqrt{r}$ focus-saddle heteroclinic orbit



Case 3: Bistable:
$$u_t = u_{xx} + ru(1-u)(u-\alpha)$$
, $\alpha \in (0, \frac{1}{2})$

Again let u(x,t) = U(z), $z = x + \theta \cdot t$;

There exists a unique saddle-saddle heteroclinic solution from (U, w) = (0,0) to (U, w) = (1,0) given by

$$U(z) = \frac{1}{1 + e^{-z/\sqrt{2r}}}, \quad \theta = \theta^* = \sqrt{2r}(\frac{1}{2} - \alpha)$$

Single Population-Single Stream

(1)
$$N_t = DN_{xx} - QN_x + f(N)$$
, $0 < x < L$, $t > 0$

Upstream terminus:

(2)
$$-DN_x(0,t) + QN(0,t) = 0$$
 (individuals cannot leave the domain)

Downstream terminus:

- (3a) N(L,t) = 0 "hostile" b.c.
- (3b) $N_x(L,t) = 0$ advection-only outflow: Danckwert b.c.

Case 1: Linear (Malthusian) problem: (1),(2),(3b), f(N) = rN

$$N(x,t) = e^{Qx/2D} \sum_{n \ge 1} B_n e^{-\lambda_n t} \left\{ \sin(\omega_n x) + \frac{2\omega_n D}{Q} \cos(\omega_n x) \right\} \qquad \omega_n := \frac{\sqrt{4D(r + \lambda_n) - Q^2}}{2D}$$

Population goes extinct or population grows unboundedly. Boundary when lowest eigenvalue $\lambda_1 = 0$. Critical length is

$$L = L_{cr}(Q) = \frac{1}{\omega} \left\{ \arctan \left[\frac{Q\sqrt{4rD - Q^2}}{2rD - Q^2} \right] + \pi\Theta(Q - 2\sqrt{rD}) \right\}, \quad \omega = \frac{\sqrt{4rD - Q^2}}{2D}$$

 $Q \rightarrow Q_{cr} := 2\sqrt{rD}$ then $L_{cr} \rightarrow \infty$ the whole population washes out

$$Q < Q_{cr}$$
 and $L < L_{cr}(< \infty)$, then $N(\cdot,t) \to 0$ as $t \to \infty$

$$Q < Q_{cr}$$
 and $L > L_{cr}$, then $N(\cdot, t) \to \infty$ as $t \to \infty$

$$Q^2 < Q_{cr}^2 \Leftrightarrow Q^2 / 4D < r$$

Single Population-Nonlinear Proliferation

Case 2: Logistic growth case: f(N) = rN(1 - N/K)

Nondimensionalize again:

(4)
$$u_t = u_{xx} - qu_x + ru(1-u)$$
 in $0 < x < L$, $t > 0$

(5)
$$u_x(0,t) = qu(0,t), u_x(L,t) = 0$$

Steady State Solutions:

(6)
$$u''-qu'+ru(1-u)=0$$
 or $\begin{cases} u'=w \\ w'=qw-ru(1-u) \end{cases}$

(7)
$$w(0) = qu(0), w(L) = 0$$

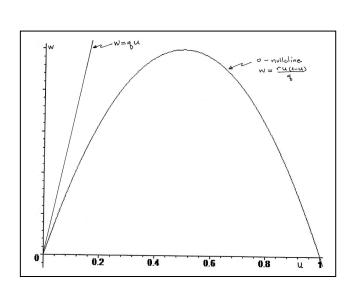
Remark: (6) is same equation as TWS equation for Fisher's equation

Lemma 1: There are no non-trivial solutions to (6), (7) for $q \ge 2\sqrt{r} = q_{cr}$.

(follows from
$$\frac{dw}{du} = q - \frac{ru(1-u)}{w} < q$$
)

So we want

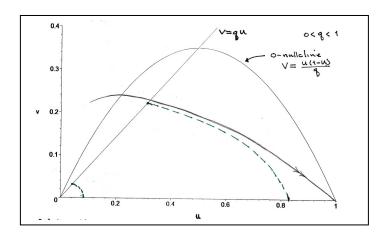
$$0 < q < 2\sqrt{r} \Leftrightarrow 0 < Q < Q_{cr} \Leftrightarrow Q^2/4D < r$$



Single Population-Single Stream continued:

Theorem 1 (Vasilyeva, Lutscher, 2010):

For $0 < q < 2\sqrt{r}$, $L > L_{cr}$, there is a unique positive solution, $u^*(x)$ to (4), (5), and $u^*(x)$ is stable.



Case 3: Bistable growth: f(N) = rN(1-N/K)(N-A); nondim'l form

(8)
$$u_t = u_{xx} - qu_x + ru(1-u)(u-\alpha)$$
 in $0 < x < L$, $t > 0$

(9)
$$u_x(0,t) = qu(0,t), u_x(L,t) = 0$$

If $q \ge q_{bd} \coloneqq \sqrt{r}(1-\alpha)$, then the population will be washed out (non-persistence).

Theorem 2: For $0 < q < q_{bd}$ there exist L > 0 for which (8), (9) has a positive, increasing steady state solution $u^*(x)$, and $u^*(x)$ is stable.

Weakly-Mixed River (Speirs & Gurney, 2001)

Uniform channel, depth d, z variable, downward from surface (0 < z < d) $q = q(z) = q_s[1 - (z/d)^2]$ = horizontal flow velocity, q_s = surface velocity

- ➤ In many streams, rivers estuaries, rates of hydrodynamic mixing is orders of magnitude lower in the vertical vs. horizontal direction
- ➤ If $D = D_x$ is horizontal component of diffusivity, D_z is vertical component, $D_z = 0$ (the limiting no vertical dispersal) implies members of a lineage will live out their lives at one depth. This gives rise to a sequence of decoupled advection-diffusion equations of the type discussed earlier.
- ➤ If persistence requires $q < 2\sqrt{rD}$ then lower discharge rates may allow persistence near the bottom when q_s is above critical.

Speirs & Gurney, 2001 applied persistence conditions to plankton and insects in small streams in SE England.

- ✓ Absence of planktonic organisms in Broadstone Stream: relatively short,
 - Shallow: organisms would have to exist throughout water column Significant advection: average advection exceeds critical value for realistic growth rate and diffusivity, hence expect washout.
- ✓ Stoneflies do exist. Nymphs are benthic (i.e. bottom dwellers)

 They experience effective advection speed that is reduced by 4 orders of magnitude, implying advection below the critical value

Persistence on a River Network

$$\Omega = E \cup V$$

$$E = \{e_1, e_2, ..., e_N\}, V = \{v_1, v_2, ..., v_M\}$$

$$\partial \Omega = \{v \in V \mid index(v) = 1\} = \{\gamma_1, \gamma_2, ..., \gamma_m\}$$

$$V_{r} = V \setminus \partial \Omega = \big\{ v \in V \mid index(v) > 2 \big\}$$

 $\Omega =$ metric graph if it is a directed graph such that every edge $e_j \in E$ is identified with an interval of the real line with positive length ℓ_j .

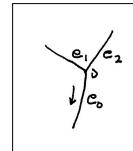
 Ω = tree graph if there are no cycles.

(10)
$$u_t = Du_{xx} - qu_x + f(u) \qquad \text{in} \qquad \{\Omega \setminus V\} \times (0, \infty)$$

Flux on
$$e_j$$
: $\varphi_j(\cdot,t) = A_j \left(-D_j \frac{\partial u_j}{\partial x} + q_j u_j \right)$, $A_j = \text{cross-sectional area}$

Simplifying model assumptions: $D_j = D$, $q_j = q$, all_j

Continuity at vertex $v: u_0 = u_1 = u_2, t \ge 0$



Conservation at vertex $V: \varphi_0(v,t) = \varphi_1(v,t) + \varphi_2(v,t)$

Upstream boundary vertex condition: $\varphi(\gamma, t) = 0$, $\gamma \in \partial \Omega$

Hostile river ending at downstream vertex γ_d : $u(\gamma_d, t) = 0$

Case 1: f(u) = ru

(12) Let $(A_0 - A_1 - A_2) \ge 0$ at each $v \in V \setminus \partial \Omega$

Theorem (Sarhad, Carlson, Anderson, 2012): If $r - \frac{q^2}{4D} < |\lambda_1|$, the population will not persist. (In particular, it will not persist if $r - \frac{q^2}{4D} \le 0$.) If $r - \frac{q^2}{4D} \ge |\lambda_1|$ a continuous positive initial population will persist.

Steady state problem on the star graph:

$$\ddot{u}_j - q\dot{u}_j + ru_j = 0, \quad j = 0,1,2 \quad e_j = (0, l_j)$$

$$\dot{u}_1(0) = qu_1(0), \quad \dot{u}_2(0) = qu_2(0), \quad \dot{u}_0(l_0) = 0$$

at
$$v:$$

$$\begin{cases} u_0(0) = u_1(l_1) = u_2(l_2) (= \overline{u}) \\ (-\dot{u}_0(0) + qu_0(0))A_0 = (-\dot{u}_1(l_1) + qu_1(l_1))A_1 + (-\dot{u}_2(l_2) + qu_2(l_2))A_2 \end{cases}$$

Assume
$$r > \frac{q^2}{4}$$
; let $\omega := \sqrt{r - q^2/4}$ and $u_j(x) = e^{qx/2}U_j(x) \Rightarrow$

$$\ddot{U}_{j} + \omega^{2}U_{j} = 0, \quad j = 0,1,2$$

$$\dot{U}_1(0) = \frac{q}{2}U_1(0), \quad \dot{U}_2(0) = \frac{q}{2}U_2(0), \quad \dot{U}_0(l_0) = -\frac{q}{2}U_0(l_0)$$

and at
$$v: \begin{cases} U_0(0) = e^{ql_1/2}U_1(l_1) = e^{ql_2/2}U_2(l_2) (= \overline{U}) \\ A_0\dot{U}_0(0) = A_1e^{ql_1/2}\dot{U}_1(l_1) + A_2e^{ql_2/2}\dot{U}_2(l_2) + \frac{q}{2}\overline{U}(A_0 + e^{ql_1/2}A_1 + e^{ql_2/2}A_2) \end{cases}$$

Thus,

$$U_0(x) = \cos \omega x + \frac{\omega \sin \omega l_0 - (q/2) \cos \omega l_0}{\omega \cos \omega l_0 + (q/2) \sin \omega l_0} \sin \omega x$$

$$U_1(x) = \frac{q e^{-ql_1/2}}{q \sin \omega l_1 + 2\omega \cos \omega l_1} \left[\sin \omega x + \frac{2\omega}{q} \cos \omega x \right]$$

$$U_2(x) = \frac{q e^{-ql_2/2}}{q \sin \omega l_2 + 2\omega \cos \omega l_2} \left[\sin \omega x + \frac{2\omega}{q} \cos \omega x \right]$$

Then,

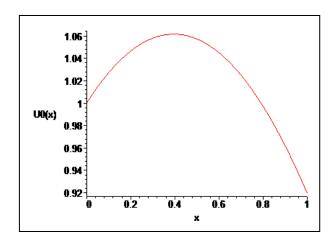
Theorem: For $r > \frac{q^2}{4}$, there is a unique positive steady state solution, $U^*(x)$, up to multiplicative constant, as long as $0 < l_j < L^*$, j = 0,1,2, where L^* is the smallest positive zero of $\sin \omega l + \frac{2\omega}{q} \cos \omega l = 0$, that is, $L^* = \frac{1}{\omega} \arctan(-2\omega/q) > 0$,

and such that the following holds:

$$A_0 \left(\Phi(l_0) + \frac{q}{2\omega} \right) + A_1 \left(\Phi(l_1) + \frac{q}{2\omega} e^{ql_1/2} \right) + A_2 \left(\Phi(l_2) + \frac{q}{2\omega} e^{ql_2/2} \right) = 0,$$

where

$$\Phi = \Phi(l) := \frac{q \cos \omega l - 2\omega \sin \omega l}{q \sin \omega l + 2\omega \cos \omega l}.$$



Steady State Solution on Star Graph with Logistic Proliferation

$$\begin{cases} \dot{u}_{j} = w_{j} \\ \dot{w}_{j} = qw_{j} - u_{j}(1 - u_{j}) \end{cases} \qquad 0 < q < 2$$

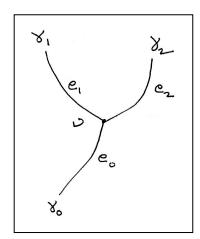
$$w_{1}(0) = qu_{1}(0), \quad w_{2}(0) = qu_{2}(0), \quad w_{0}(l_{0}) = 0$$

$$w_1(0) = qu_1(0), \quad w_2(0) = qu_2(0), \quad w_0(l_0) = 0$$

At
$$v: u_0(0) = u_1(l_1) = u_2(l_2) \quad (= \overline{u})$$

If we assume $A_0 = A_1 + A_2$ then

$$A_0 w_0(0) = A_1 w_1(l_1) + A_2 w_2(l_2)$$



If
$$A_1 = A_2$$
 then $2w_0(0) = w_1(l_1) + w_2(l_2)$

If we also assume $l_1 = l_2$, then $w_0(0) = w_1(l_1) = w_2(l_1)$, and there exists a unique positive solution to the problem.

Competition between Two Species: Single Compartment

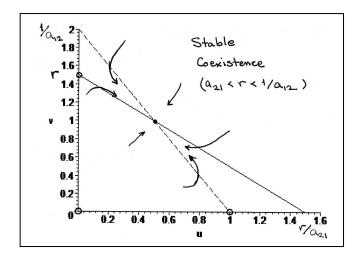
$$\begin{cases} \dot{u} = u(1 - u - a_{12}v) \\ \dot{v} = v(r - a_{21}u - v) \end{cases}$$

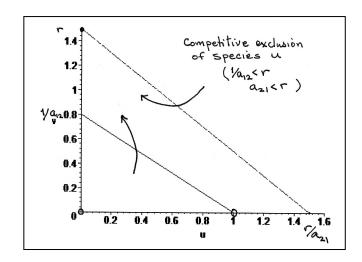
Summary: 1. If $ra_{12} < 1$ and $r < a_{21}$, then species u wins

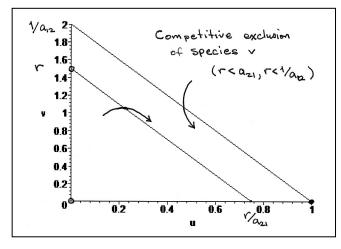
2. If $ra_{12} > 1$ and $r > a_{21}$, then species v wins

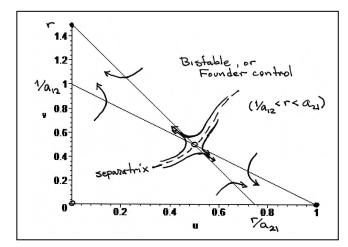
3. If $ra_{12} < 1$ and $r > a_{21}$, both species coexist

4. If $ra_{12} > 1$ and $r < a_{21}$, we have bistable situation





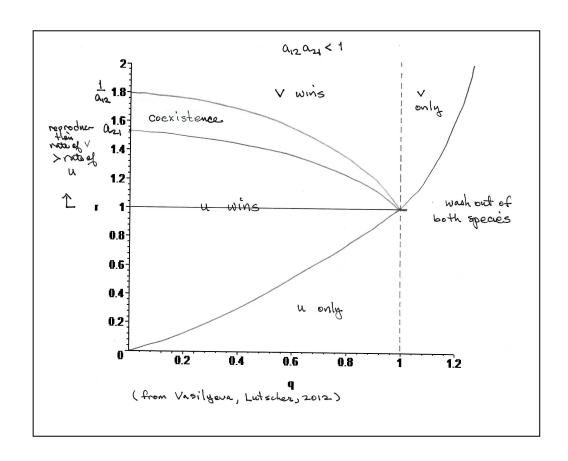




Competition in Advection-Driven Environments

(1)
$$\begin{cases} u_t = u_{xx} - qu_x + u(1 - u - a_{12}v) & 0 < x < L, t > 0 \\ v_t = v_{xx} - qv_x + v(r - a_{21}u - v) \end{cases}$$

(2)
$$-u_x(0,t) + qu(0,t) = 0 = -v_x(0,t) + qv(0,t), \quad u_x(L,t) = v_x(L,t) = 0$$



Spatial Implicit Approximation

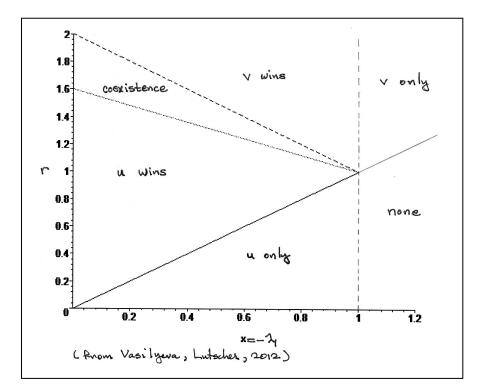
(Vasilyeva, Lutscher, 2012; van Kirk, Lewis, 1997; Strohm, Tyson, 2011)

In the absence of population growth the advection-diffusion operator, along with Danckwert b.c.s, leads to a net loss of individuals from the domain. Thus, Vasilyeva and Lutscher replaced the advection-diffusion operator with a 1st-order decay term that induces the same loss rate as the spatial movement operator.

The principle/dominant eigenvalue λ_1 is negative inverse of the resident time of individuals in domain [0,L]. So spatial movement is replaced by $(\lambda_1(q)u,\lambda_1(q)v)$ that should implicitly capture loss due to spatial movement at the same rate. Hence

$$\begin{cases} \dot{u} = \lambda_1 u + u(1 - u - a_{12}v) \\ \dot{v} = \lambda_1 v + v(r - a_{21}u - v) \end{cases}$$

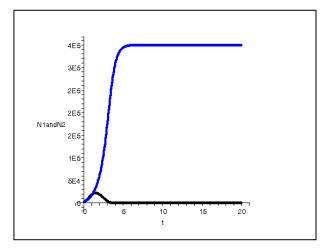
From phase plane analysis (here $a_{12} = 0.5, a_{21} = 1.6$, i.e. case $a_{12}a_{21} < 1$)

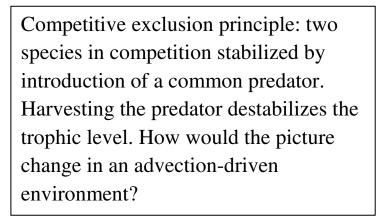


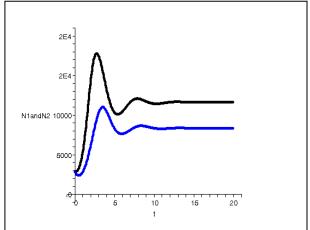
Going Forward...

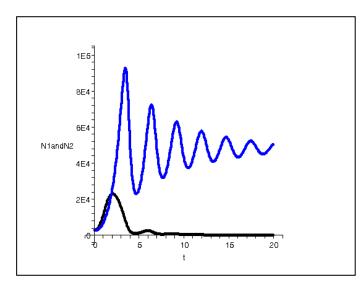
- ➤ Investigate competition between species with different diffusivities in an advection-driven environment
- ➤ Investigate competition in the presence of predation in an advection-driven environment
- ➤ Generalize motility beyond simple diffusion
- > Expand invasion analysis to networks
- ➤ Compare results with different boundary conditions
- ➤ Investigate more aspects of partial-vertical mixing
- \triangleright Include more aspects of variable flow speed downstream (period q(t) for tidal effects, e.g.)
- > Bring more fluid dynamics modeling into the stream model

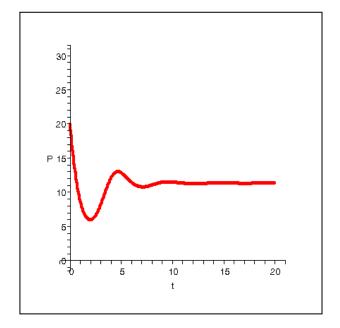
Questions driven by more biological observations

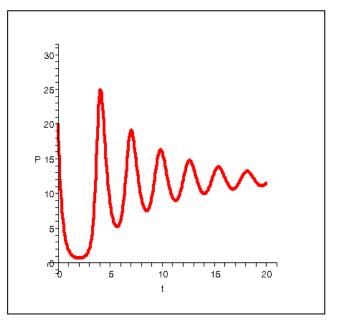












Thanks for Listening

AfterMath