
7 Transmission Line Equation (Telegrapher’s

Equation) and Wave Equations of Higher

Dimension

7.1 Telegrapher’s equation

Consider a piece of wire being modeled as an electrical circuit element (see
Figure 1) consisting of an infinitesimal piece of (telegraph) wire of resistance
R4x and inductance L4x, while it is connected to a ground with conduc-
tance (G4x)−1 and capacitance C4x. Let i(x, t) and v(x, t) denote the
current and voltage across the piece of wire at position x at time t. The
change in voltage across the piece of wire is given by v(x+4x, t)− v(x, t) =
−i(x, t)R4x − ∂i

∂t
(x, t)L4x, and the amount of current that disappears via

the ground is i(x+4x, t)− i(x, t) = −i(x, t)G4x− ∂v
∂t

(x, t)C4x. Dividing
by 4x and letting 4x→ 0 gives

∂v

∂x
= −Ri− L∂i

∂t
,

∂i

∂x
= −Gv − C∂v

∂t
.

Eliminating i to combine the equations gives

LC
∂2v

∂t2
+ (LG+RC)

∂v

∂t
+RGv =

∂2v

∂x2
. (1)

If we define c := 1/
√
LC, a := c2(LG+RC), b := c2RG, then (1) becomes

∂2v

∂t2
+ a

∂v

∂t
+ bv = c2

∂2v

∂x2
. (2)

This equation, or (1), is referred to as the telegrapher’s equation. For
reasons we will explain below the a∂v/∂t term is called the dissipation term,
and the bv term is the dispersion term.

Of course, if a = b = 0, we are back to the vibrating string, i.e. wave
equation, with its right and left moving wave solution representation. A
natural question to ask is: Can we make a change of variables to reduce (2)
to the wave equation? Let’s see. If we let v(x, t) = w(t)u(x, t), the idea is to
pick w(t) to obtain a “reduced” equation for u. Substituting this form into
(2) gives

wutt + {2dw
dt

+ aw}ut + {d
2w

dt2
+ a

dw

dt
+ bw}u = c2wuxx .
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Figure 1: Circuit model element for the telegraph equation

You could try to set both bracketed expressions to zero, but you will find
that this is only possible if b− a2/4 = 0. Assume temporarily that b 6= a2/4
so that both expressions can not simultaneously be zero. We can set the
first bracketed expression equal to zero and solve the first-order equation, or
set the second bracketed expression equal to zero and solve the second-order
equation. Let us do the former calculation: dw

dt
+ 1

2
aw = 0 to eliminate the

ut term. This gives, up to an irrelevant multiplicative factor, w(t) = e−at/2.
If we define k := b− a2/4, then

utt + ku = c2uxx . (3)

This is not the wave equation. Consider first the case when k = 0, i.e.
b = a2/4. Then u satisfies the wave equation, so the general solution for the
v equation is

v(x, t) = w(t)u(x, t) = e−at/2{F (x− ct) +G(x+ ct)} .

Thus, the right and left moving waves would retain their shape (given by
F and G) except now there is an amplitude-attenuation factor that depends
on time. That is, the waves remain relatively undisturbed. The attenua-
tion requires extra energy being put into the system periodically, but it is
a desirable property to have the waves retain their shape if it is carrying
specific information. By returning to the original variables, b = a2/4 implies
4(LC)(RG) = (RC + LG)2 = (RC)2 + 2(LC)(RG) + (LG)2 if, and only if
0 = (RC−LG)2; so the circuit parameters needed to have the dispersionless
case k = 0 is for RC = LG. Since the attenuation factor involves a, that is
one reason for calling a∂v/∂t a dissipation term.

Remark: As a historical aside, William Thomson (later Lord Kelvin), the
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great 19th century mathematical physicist, was very instrumental in the
British effort to lay the trans-Atlantic telegraph cable, an effort started in
1858. Kirchhoff was probably the first to write down the telegraph equation,
but Thomson certainly had done some analysis on it to draw the conclu-
sions he did. Oliver Heaviside sometime later also wrote down the equation,
and maybe the first to realize that physical constants could be adjusted to
eliminate the dispersion. But the means to do this went to Michael Pupin,
a Serbian born American engineer, so the above case corresponds to what
became known as “Pupinizing” the cable. Our interest in this section in
introducing the telegraph equation is to see what comes out of the adding of
lower order terms to the wave equation.

In case k 6= 0, (3) is not a wave equation so we will defer a full discussion
of the solution here. But we examine when (3) has progressive wave solutions.
Let u(x, t) = φ(x− ct) = φ(z). Substituting this into (3) gives

c2
d2φ

dz2
+ kφ = c2

d2φ

dz2
⇒ φ ≡ 0 .

So there is no nontrivial solution of this form. Letting u = φ(x + ct) does
not give a non-zero solution either since the argument does not depend on
the sign of c. Now try u(x, t) = φ(x − γt) = φ(z), γ 6= ±c. Then, upon
substituting into (3),

(γ2 − c2)d
2φ

dz2
+ kφ = 0 or

d2φ

dz2
+ µ2φ = 0 ,

where µ2 = k/(γ2 − c2). So, we have bounded, oscillatory wave solutions
to (3) for every speed γ, with |γ| > |c|. Any sum of these wave solutions
is a wave solution, and waves that do not propagate at the same speed are
dispersive; hence, (3) is a dispersive hyperbolic equation.

Exercises

1. If you let v(x, t) = eαx−βtu(x, t) instead of the above form, show that
α2 = k, k as given above. What is β and what is the resulting equation
for u?

2. If we define E(t) = 1
2

∫∞
−∞{c

−2u2t +u
2
x+ku2}dx for some smooth solution

to (3) on the real line, then show that E(t) is independent of t. Can
you draw any conclusions from this?
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Remark : The equation (3) is also a linear Klein-Gordon equation associated
with quantum mechanics (used to describe a “scalar” meson if k is taken as
m2, where m is mass of the particle). It can also be thought of as a model
for a flexible string with additional stiffness provided by the surrounding
medium. The equation is not only of dispersive type, but is also conservative
(see the above exercise).

Remark : If there is no inductance in the transmission line, then L = 0 in
(1), so RC ∂v

∂t
+RGv = ∂2v

∂x2
, or more commonly,

C
∂v

∂t
+Gv =

1

R

∂2v

∂x2
. (4)

Note that (4) is a diffusion equation, not a wave equation. What “trans-
mission line” has no inductance? Well, axons and dendrites of nerve cells.
A reason for this is that the carrier of current are ions, not electrons. In
this situation (4) is called a (linear) cable equation1. Many small, short den-
drites are considered linear cables, so (4) is a reasonable description for the
dynamics of transmembrane potential v(x, t). But larger dendrites and all
axons must carry discrete signals (propagated action potentials) a consid-
erable distance, so an adequate description of this signal propagation must
replace the linear term Gv with an expression that is nonlinear in v(x, t).
Wave solutions of the above type is an important concept in nonlinear PDEs
too.

7.2 Plane waves and the dispersion relation

Wave solutions are a central idea in engineering and the physical sciences, so
we need a bit more terminology. For linear equations we look for solutions
of the form (in one space dimension) u(x, t) = A cos(kx − ωt), where A
is the amplitude, k is the wave number (measure of the number of spatial
oscillations per 2π space units, observed at a fixed time), ω is the frequency
(a measure of the number of oscillations in time per 2π units, observed at a

1Apparently this is the way Thomson first viewed the telegrapher’s equation. Discussion
on this can be found in Jeremy Gray’s Henri Poincare: A Scientific Biography, Princeton
University Press, 2013
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fixed spatial location). Other notable quantities often discussed are λ = 2π/k
= wavelength (distance between peaks), p = 2π/ω = period (time scale of
repeated pattern), and c = ω/k = phase velocity (speed one has to move to
keep up with a wave crest).

For calculating purposes, instead of the above form we use u(x, t) =
Aei(kx−ωt) in the equation, then take real or imaginary parts when necessary.

Example: the heat equation ut = Duxx
Upon substitution of the u = Aei(kx−ωt) into the heat equation we obtain

−iωAei(kx−ωt) = (ik)2DAei(kx−ωt) ⇒ ω = −ik2D .

The relationship between frequency and wavenumber, ω = ω(k), is called a
dispersion relation. Note that if we substitute this relation back into the

form of u, we have u(x, t) =
(
Ae−Dk

2t
) (
eikx
)
. We have written this as a

product of two quantities, namely dissipation term times a spatial oscillation
term. So the rate of decay of a plane wave depends on the wavenumber;
waves of shorter wavelength (larger wavenumber) decay more rapidly than
waves of longer wavelength.

Example: the wave equation utt = c2uxx
Upon substitution of u(x, t) = Aei(kx−ωt), we obtain

(−iω)2 = c2(ik)2 ⇒ ω2 = c2k2 ⇒ ω = ±ck .

Thus, putting this dispersion relation back into the plane wave solution, we
have u(x, t) = Ae−k(x±ct), which give the right and left moving sinusoidal
traveling waves of speed c.

Definition: An equation is dispersive if ω(k) is real and d2ω/dk2(k) 6= 0. If
ω(k) is complex, the equation is diffusive.
Dispersion relations are sometimes used to classify equations, and the con-
cept carries over to higher dimensional equations and nonlinear equations
also. Note that by this definition, the heat equation is diffusive, but the
wave equation is not dispersive.

Example: Klein-Gordon equation utt +m2u = c2uxx
Again substituting the plane wave solution representation, we obtain

(iω)2 +m2 = c2(ik)2 ⇒ ω = ±
√
c2k2 +m2,
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which makes the Klein-Gordon equation dispersive, consistent with our dis-
cussion in the previous subsection.

Exercises:
For the following equations, find the dispersion relation and classify the equa-
tion as diffusive, dispersive, or neither:

1. utt + a2uxxxx = 0 (beam equation)

2. ut + aux + buxxx = 0 (linear Korteweg-deVries equation)

3. ut = iuxx (free Schrödinger equation)

4. ut + uxxx = 0 (Airy’s equation)

5. utt = c2uxx + duxxt (String equation with Kelvin-Voigt damping)

Remark: Plane wave solutions: For higher space dimensions, the wave num-
ber becomes a vector of wave numbers in each direction, so plane wave solu-
tions take the form u(x, t) = Aei(k·x−ωt). Using this in the multidimensional
version of Schrödinger equation, ut = i∇2u, gives ω = −|k|2 = −

∑n
i=1 k

2
i .

Then the condition for an equation to be dispersive is for the determinant of
W = (∂2ω/∂ki∂kj) 6= 0.

Remark: Returning to the plane wave solution of the diffusion equation,
we can think of having a one-parameter family of solutions, one for each
wavenumber with not necessarily the same amplitude:

u(x, t; k) = A(k)e−Dk
2teikx, k ∈ R.

We can formally superimpose such solutions to make another solution, and
running over all possible cases gives

u(x, t) =

∫ ∞
−∞

A(k)e−Dk
2teikx dk ,

where we assume the amplitude is k-dependent and well-behaved, say A(k)
is continuous, bounded, absolutely integrable. Then

u(x, 0) := f(x) =

∫ ∞
−∞

A(k)eikx dk
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Figure 2: Light cone in R3

is the Fourier transform of A(k): that is, A(k) is the inverse Fourier trans-
form of f(x). We will discuss Fourier transforms in Section 12.

7.3 Wave equation in higher dimensions

Consider the Cauchy problem in three space{
∂2u
∂t2

= c2∇2u x ∈ R3, t > 0
u(x, t) = f(x), ∂u

∂t
(x, 0) = g(x) .

(5)

The (compact) formula for the solution to (5), analogous to d’Alembert’s
formula, is

u(x, t) =
1

4πc2t

∫
S

g(x′)dx′ +
∂

∂t
{ 1

4πc2t

∫
S

f(x′)dx′} (6)

where S = S(x, t) is the sphere centered at x with radius ct. (This formula
is due to Poisson, but is known as Kirchhoff’s formula.)

So the value of u(x, t) depends, from (6), just on the values of f(z) and
g(z) for z on the spherical surface S(x, t) = {z ∈ R3 : |z− x| = ct}, but not
on the values of f and g inside the sphere. Another way of interpreting this
is to say that the values of f and g at a point x, influence the solution on
the surface {|x−x1| = ct} of the light cone that emanates from (x1, 0). (See
Figure 2.)

This observation relates to Huygen’s principle. That is, any solution
of the 3D wave equation (e.g. any electromagnetic signal in a vacuum) prop-
agates at exactly the speed c of light, no faster and no slower. This principle
allows us to see sharp images. It means that any sound is carried through
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the air at exactly a fixed speed and without “echoes” (density and velocity of
small acoustic disturbances follow the wave equation), assuming the absence
of walls or inhomogeneities in the air. Thus, at any time t a listener hears
exactly what has been played at the time t− d/c, where d is the distance to
the source (musical instrument, for example), rather than a mixture of the
notes played at various earlier times.

Now consider the Cauchy problem in 2D:{
∂2u
∂t2

= c2∇2u x = (x1, x2) ∈ R2, t > 0
u(x, t) = f(x), ∂u

∂t
(x, 0) = g(x).

(7)

The analogue to Kirchhoff’s formula is

u(x, t) = u(x1, x2, t) =


1

2πc

∫
D

g(y1,y2)dy1dy2√
c2t2−(x1−y1)2−(x2−y2)2

+

∂
∂t
{ 1
2πc

∫
D

f(y1,y2)dy1dy2√
c2t2−(x1−y1)2−(x2−y2)2

,
(8)

where D = D(x, t) is the disk {(y1, y2) : (x1−y1)2 +(x2−y2)2 ≤ c2t2}. Thus,
formula (8) shows that the value of u(x, t) depends on the values of f(z) and
g(z) inside the cone

(x1 − y1)2 + (x2 − y2)2 ≤ c2t2.

Communication would be a nightmare because sound and light waves would
not propagate sharply. It would be very noisy because of all the echoing. So
living in 3D (space) is a good thing.

Remark : A restatement of Huygen’s principle is that in odd dimensions
greater than one we get sharp signals from a point source, but in even space
dimensions this is violated. Figure 3 illustrates Huygen’s principle for di-
mension one.

Summary: Be able to find the dispersion relation for a given equation and
know how to classify equations based on it.
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Figure 3: Huygen’s principle in one space dimension
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