00_Opening Remarks.pdf
01_Introduction .pdf
02_Fundamental Definitions.pdf
03_Models and Model Development.pdf
04_Intro to First-Order PDEs.pdf
05_Wave Equation on the Line.pdf
06_More on 1D Wave Equation.pdf
07_Telegrapher Equation.pdf
08_Heat Equation_General Solution.pdf
09_More on 1D Heat Equation.pdf
10_Summary of IVPs.pdf
11_Fourier transform.pdf
12_SemiInfiniteDomains.pdf
13_Intro to IBVPs.pdf
14_Separation of Variables Method.pdf
15_More Remarks on Solutions to IBVPs.pdf
16_Convergence of Fourier Series.pdf
17_Source Problems for IBVPs .pdf
18_Sturm-Liouville EVPs.pdf
19_More on EVPs.pdf
20_Beam Equation.pdf
21_Laplace's Equation.pdf
22_Greens functions-PDEs.pdf
A_Some Review of Ordinary Differential Equations.pdf
B_Some Calculus Concepts.pdf
C_Multidimensional Diffusion.pdf
D_Dirac Delta Distributions.pdf
E_Minimization Principle.pdf
F_Intro to Bessel Functions.pdf
G_Uniform Convergence of Fourier Series.pdf
H_Laplace's Equation in a Ball.pdf
I_Dirichlet's Principle.pdf
J_Greens functions-ODEs.pdf
K_Random Walk Heat Equation Derivation.pdf